
Boston Jan/2006 AD tool usability and OpenAD 1'

&

$

%

AD tool usability and OpenAD

• 4 motivations for automatic differentiation

• at first glance it looks like a compiler to the user

• after a while it seems to get a bit more complicated

• what do we do with OpenAD

Utke ECCO Meeting

Boston Jan/2006 AD tool usability and OpenAD 2'

&

$

%

4 motivations for automatic differentiation

we have a some model given as a (large) program

1. pretend to know nothing about the program and take finite differences of

an oracle? - perhaps not.

2. get machine precision derivatives (avoid approximation vs. rounding

problem)

3. the reverse mode (program reversal) yields “cheap gradients”

4. if the program is large, so is the adjoint, so is the effort to do it manually

... and it is easy to get wrong but hard to debug

get a tool to do it “automatically”

Utke ECCO Meeting

Boston Jan/2006 AD tool usability and OpenAD 3'

&

$

%

Looks like a compiler to me

• a simple user setup: the entire model code with the top level routine

subroutine foo(x,y)

input x and output y.

• feed this to a tool that

– parses the input code

– for each construct found in the input create a new construct that does

the “derivative computation”

– integrate all pieces into a new program (or may be even an executable)

e.g. for subroutine foo bar(x bar,y bar) where,

x bar= ∂y
∂x

• run foo bar and be done

• but may be it is rather like run foo bar wait ... wait some more ...

wait even longer ... not done yet ran out of memory

• a simplistic approach is not enough - how about “activity analysis”?

Utke ECCO Meeting

Boston Jan/2006 AD tool usability and OpenAD 4'

&

$

%

still looks like a compiler to me

• assume the model code with the top level routine

subroutine foo(

inputs
︷ ︸︸ ︷

y, q, r, s,

outputs
︷ ︸︸ ︷

x, t, u, v)

x, y, and passive parameters q, r, s, t, u, v.

• we are only interested in derivatives involving active variables x and y

• designate x is independent and y as dependent

• use specialized compiler-style data-flow analysis to generate foo bar only

for computations that depend on x and also impact y.

• foo bar takes less time

• now try it again run foo bar ... wait ... wait some more

... hmm, out of memory - again /

• Why memory? Cheap gradients cost memory!

Utke ECCO Meeting

Boston Jan/2006 AD tool usability and OpenAD 5'

&

$

%

a little reminder

foo contains:

a = α(x)

b = β(a)
...

y = γ(b)

foo bar code has:

b̄ = b̄ + ȳ ·
∂γ
∂b

ւpop

ȳ = 0
...

ā = ā + b̄ · ∂β
∂a

ւpop

b̄ = 0

x̄ = x̄ + ā ·
∂α
∂x

ւpop

ā = 0

so we may tape the needed partials:

a = α(x); push ∂α
∂x

b = β(a); push ∂β
∂a

...

y = γ(b); push ∂γ
∂b

Utke ECCO Meeting

Boston Jan/2006 AD tool usability and OpenAD 6'

&

$

%

trade memory consumption for recomputation

tim
e

code execution

6 checkpoints

reverse

forward with tape; length=1/7

• control checkpoint locations

via pragmas

• determine checkpoint con-

tents using compiler-like side

effect analysis

• hierarchy of checkpoints

• checkpoint size vs. tape size

reductions

• how should one control irreg-

ular checkpointing/reversal

schemes?

... it is becoming less compiler - like ...

Utke ECCO Meeting

Boston Jan/2006 AD tool usability and OpenAD 7'

&

$

%

obfuscating code → confused tool

• usually the first victim is activity analysis.

• example: write intermediate state to a file, later read that state from the

file (and may be throw in constructed file names).

– conventional analysis looses track

– wrap file i/o into subroutines and present “analyzable” code to the tool

• black box routines

• type recasting (use of EQUIVALENCE)

• extensive use of pointer arithmetic (in C/C++)

Utke ECCO Meeting

Boston Jan/2006 AD tool usability and OpenAD 8'

&

$

%

more manual intervention

• have lots of extras for environment setup/output/...

• show the AD tool only parts of the code

– reduce conservative (over)estimates, e.g. overestimate of active variable

set

– avoid confusing the analysis with irrelevant/difficult code

– cut down on analysis time

– have to manually ensure hidden parts fit seamlessly!

• self adjoint subroutines

– hide from tool

– manually adjoin via wrapping code (unless there is a generic interface)

• parallel processing

– possibly hide data exchange / execution control

– manually adjoin via wrapping code (tools are getting better)

.... all of the above is distinctly not compiler-like. ...

Utke ECCO Meeting

Boston Jan/2006 AD tool usability and OpenAD 9'

&

$

%

OpenAD (ACTS) etc.

some goals:

• modular design

• reusing existing components

• open source!

• language independence

• flexibility

• new AD algorithms

• did I mention open source?

• application to GCM code

xaifBooster

xaif xaif

F F’sagesage
ADIC 2.0

F’F

F F’Open64
(whirl)

Fwhirl whirlF’

xaif whirlwhirl xaif

F’xaifxaifF
(AD transformations)

O
p

en
A

n
al

ys
is

ROSE
(Sage3)

Sage Sage

FORTRAN code for F
FORTRAN code
for derivatives

 C code for F C code for derivatives

(Fortran incarnation of OpenAD)

OpenAD/F

Utke ECCO Meeting

Boston Jan/2006 AD tool usability and OpenAD 10'

&

$

%

OpenAD development

ImechanicsI → ItuningI → ImechanicsI → ItuningI → ...

• started out with small tests to

verify numerics

• simple box model

• shallow water model (tuning via

analysis and improved transfor-

mation)

• gcm configuration

– mechanics sorted out

– tuning to be refined −0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 50 100 150 200 250 300 350

−80

−60

−40

−20

0

20

40

60

80

Longitude

La
tit

ud
e

res
o
penad

2
.addepth

8
00000.bin.0000000095.2x2.lev1 min/max=0.00101 / 18.6

All of the above become part of a regression test set ensure some stability

Utke ECCO Meeting

Boston Jan/2006 AD tool usability and OpenAD 11'

&

$

%

OpenAD plans

relevant for this community:

• solidify/extend the Fortran front-end

• documented recipes for tool usage

• improved and new code analyses (activity, TBR, linearity)

• improved transformation (using heuristics and run-time profiles)

• efficient second order derivatives

• non-smoothness detection & handling in an optimization context

www.mcs.anl.gov/openad

Utke ECCO Meeting

